970 resultados para femtosecond phenomena


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ablation in zinc selenide (ZnSe) crystal is studied by using 150-fs, 800-nm laser system. The images of the ablation pit measured by scanning electronic microscope (SEM) show no thermal stress and melting dynamics. The threshold fluence is measured to be 0.7 J/cm2. The ultrafast ablation dynamics is studied by using pump and probe method. The result suggests that optical breakdown and ultrafast melting take place in ZnSe irradiated under femtosecond laser pulses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2π ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02

Relevância:

30.00% 30.00%

Publicador:

Resumo:

unavailable<br>H. Sun's e-mail address is shy780327@siom.ac.cn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed and described some phenomena, which were that when a alpha-BBO crystal was irradiated by a focused femtosecond laser beam, the temperature effect happened in a minute area of focus, then the induced beta-BBO phase was separated within the minute area in the alpha-BBO crystal. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent adiabatic saddle-point approach of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is extended to multiphoton detachment of negative ions with outer p-state electrons. This theory is applied to investigate the strong-field photodetachment dynamics of F- ions exposed to few-cycle femtosecond laser pulses, without taking into account the rescattering mechanism. Numerical calculations are considered for mid-infrared laser wavelengths of 1300 and 1800 nm at laser intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. Two-dimensional momenta saddle-point spectra exhibit a distinct distribution in the shape of a “smile” in the complex-time plane. Electron momentum distribution maps of direct electrons are investigated. These produce a distinct pattern of above-threshold detachment (ATD) concentric rings due to constructive and destructive quantum interference of electrons detached from their parent ions. Probability detachment distributions presented, capturing the influence of saturation effects that are found to become more significant with increasing laser intensity at a fixed wavelength. ATD photoangular distributions as functions of laser intensity and wavelength near channel closings are also investigated and found to be sensitive to initial-state symmetry. Nonmonotonic structures observed in the ejected photoelectron energy spectra are attributed to interference effects from coherent electronic wave packets. Additionally the profiles of all the photoelectron emission spectra show strong dependence on the carrier-envelope phase, indicating that it is a reliable parameter for characterizing the wave form of the pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real-time dynamics of molecular (Na_2 . Na_3) and cluster Na_n (n=4-2l) multiphoton ionization and -fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Wave packet motion in the dimer Na_2 reveals two independent multiphoton ionization processes while the higher dimensional motion in the trimer Na_3 reflects the chaotic vibrational motion in this floppy system. The first studies of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na^*_n) ) with femtosecond laser pulses give a striking illustration of the transition from "molecule-like" excitations to "surfaceplasma"-like resonances for increasing cluster sizes. Time-resolved fragmentation of cluster ions Na_n^* indicate that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond laser pulses generated from an amplified coiliding pulse modelocked ring dye laser have been employed in molecular beam experiments to study the dynamics and the pathways of multiphoton induced ionization, autoionization and fragmentation of Na2 . Energy distributions of photoelectrons arising from these processes and the mass and released kinetic energy of the corresponding fragment ions are measured by time-of-flight spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many ultrafast structural phenomena in solids at high fluences are related to the hardening or softening of particular lattice vibrations at lower fluences. In this paper we relate femtosecond-laser-induced phonon frequency changes to changes in the electronic density of states, which need to be evaluated only in the electronic ground state, following phonon displacement patterns. We illustrate this relationship for a particular lattice vibration of magnesium, for which we—surprisingly—find that there is both softening and hardening as a function of the femtosecond-laser fluence. Using our theory, we explain these behaviours as arising from Van Hove singularities: We show that at low excitation densities Van Hove singularities near the Fermi level dominate the change of the phonon frequency while at higher excitations Van Hove singularities that are further away in energy also become important. We expect that our theory can as well shed light on the effects of laser excitation of other materials.